ntroduction	Experimental	Results	Conclusions
	000	0000000	

Electrodeposited zinc oxide nanorods ALD-coated with iron oxide

Photocatalytic and photoelectrochemical properties

Taha Ahmed, Mattis Fondell, Mats Boman, Jiefang Zhu

Department of chemistry-Ångström

UPPSALA UNIVERSITET

Oct 29, 2013

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

Introduction	Experimental 000	Results 00000000	Conclusion
<u> </u>			

Combining two semiconductors to make one photoanode

Combining two semiconductors...

to absorb more light and more colours,

to better separate photoexcited electron-hole pairs

... ZnO nanorods coated with varying thickness of iron oxide

・ロト ・戸下 ・ヨト ・ヨト ・クタマ

nanorods cause increased surface area, ZnO is white, iron oxide commonly red, band edges fairly well matched

Introduction	Experimental 000	Results 0000000	Conclusion
T.:	بمجام استنجا بتبعا ما	wanta kanalatin kumatu	

Introduction	Experimental •00	Results 0000000	Conclusions
Electrodeposition	of zinc oxide, ALD	of iron oxide	

Electrodeposition

Potentiostatic cathodic deposition for 1.5 h in $ZnCl_2(aq)$, three-electrode cell, Ag/AgCl RE, Pt-wire CE

Atomic-layer deposition

Cycles of ferrocene and oxygen gas, using Picosun ALD reactor at 450 °C, conditions targeted for hematite formation,

Number of cycles varied between 35 to 100 (< 25 nm)

Introduction	Experimental 00●	Results 00000000	Conclusions
In-situ tracking o	f dye degradation		

Degradation of azo dye in aqueous soln. under visible-light

Dye: eriochrome black T, 5 mg l^{-1} . Light source: 50 W 450 nm LED.

Iron-phase is so thin that it does not affect morphology

Before

After

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

Introduction	Experimental 000	Results ○○●○○○○○	Conclusior
Optical spectrosco	py: overall absorp	tion increases	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	duction Experimental 000			Results ○○○●○○○○		Conclusion		
			1.					

ATR-FTIR spectroscopy: hard-to-interpret weak signal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Experimental 000	Results	Conclusions
Raman spectro	scopy: per	haps not pure hematite	

Introduction	Experimental 000	Results	Conclusions
XPS: hema	tite after all?		

Introduction	Experimental 000	Results ○○○○○●○	Conclusions	
Dhata cataly	is offect improved	with thiskness		

Introduction	Experimental 000	Results	Conclusions
Photocataly	tic effect improves v	with thickness	

Introduction	Experimental 000	Results 00000000	Conclusions
Conclusions			

Photocatalytic activity improves with increasing thickness

but even our 'thickest' coating is really thin. Perhaps the biggest gain is that the samples show very good stability under irradiation. This is due to the iron oxide coating.

Iron oxide phase

XPS strongly indicates hematite, but poor crystallinity and very thin iron oxide layer complicates analysis.

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

Int	-ri		11	ct			n
		Ju		CL		~	

Experimental

Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Conclusions

Simple preparation gives 3D-nanostructure

Addition of ultrathin conformal iron oxide layer improves stability greatly, and makes the photoanode active in visible light.

Low PC activity thought to be partly due

to small amount of visible-light-active catalyst on each sample.

Trending

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

Electrodeposition

Electrodeposition of zinc oxide

$$\frac{1}{2}O_2 + H_2O + 2e^- \longleftrightarrow 2OH^-$$
(1)
$$Zn^{2+} + 2OH^- \longrightarrow ZnO + H_2O$$
(2)

Dissolved oxygen in the electrolyte is reduced to hydroxide ions, local pH increase at the electrode's surface precipitates zinc hydroxide, zinc oxyhydroxide, and zinc oxide (temperature dependent).

Other oxygen-sources have been used, e.g., nitrate ions in solution, water. Bubbling oxygen allows easy control of O₂ concentration, and leaves no by-products.

Electrodeposition

Electrodeposition of zinc oxide

$$\frac{1}{2}O_2 + H_2O + 2e^- \longleftrightarrow 2OH^-$$
(1)
$$Zn^{2+} + 2OH^- \longrightarrow ZnO + H_2O$$
(2)

Dissolved oxygen in the electrolyte is reduced to hydroxide ions, local pH increase at the electrode's surface precipitates zinc hydroxide, zinc oxyhydroxide, and zinc oxide (temperature dependent).

Other oxygen-sources have been used, e.g., nitrate ions in solution, water. Bubbling oxygen allows easy control of O_2 concentration, and leaves no by-products.

Iron oxide comes in a variety of structures and compositions

Cornell & Schwertmann. The Iron Oxides. Wiley-VCH Verlag (2003)

Taha Ahmed, Uppsala university

Iron oxide polymorphs (a selection)

Polymorph	Туре	Symmetry	Spacegroup	${\sf Density/gcm^{-3}}$
Wustite, FeO Magnetite, Fe ₃ O ₄ Hematite, α -Fe ₂ O ₃ Maghemite, γ -Fe ₂ O ₃ Goethite, α -FeOOH Lepidocrocite, γ -FeOOH	spinel corundum spinel	cubic cubic trigonal cubic	Fm3m Fd3m R3c P4 ₃ 32 2/m2/m2/m Cmcm	6 5.18 5.23 4.87 3.7 4

Each polymorph shows a characteristic Raman spectrum...

Tahan Alameet, all pasal An all were at than Spectroscopy 39, 881-886 (2008) 10:1002/jrs.1927= ト (三 ト 三日 = ク へ ()

... but IR is more open to interpretation

Figure 3. Calculated transmission spectra corresponding to three different particle shapes; (a)long prolate with $L_{\perp} = 0.45$ and $L_{\parallel} = 0.10$; (b) sphere with $L_{\perp} = L_{\parallel} = \frac{1}{2}$; (c) the flat oblate with $L_{\perp} = 0.15$ and $L_{\parallel} = 0.70$. Thick vertical bars on the abscissae indicate the observed peak frequencies.

Iron oxides ○○○○●

Hematite IR/Raman peaks (literature)

obs ^{26,27} /cm ⁻¹	calcd/cm-1	sym species	activity	ions involved
225	228	A _{1g}	Raman	Fe,O
229	290	Eu	IR	Fe,O
247	200	Eg	Raman	Fe,O
293	294	Ĕ	Raman	Fe,O
299	327	Eg	Raman	Fe,O
310-335	310	Eu	IR	Fe,O
310-335	339	A_{2u}	IR	Fe,O
380 - 400	368	Eu	IR	Fe,O
380 - 400	378	A _{2u}	IR	Fe,O
412	391	Eg	Raman	Fe,O
440 - 470	454	Eu	IR	Fe,O
498	447	A _{1g}	Raman	Fe,O
613	466	Eg	Raman	Fe,O

TABLE 0. Calculated and Observed Wassensenhaus from

Chamritski & Burns The Journal of Physical Chemistry B 109, 4965-4968 (2005)